
H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 221–232, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Approach to Domain-Specific Reuse
in Service-Oriented Environments

Jianwu Wang1,2, Jian Yu1, Paolo Falcarin1, Yanbo Han3, and Maurizio Morisio1

1 Software Engineering Research Group, Dept. of Control and Computer Engineering,
Politecnico di Torino, 10129, Torino, Italy

2 San Diego Supercomputer Center, University of California, San Diego, 92093, USA
3 Research Centre for Grid and Service Computing, Institute of Computing Technology,

Chinese Academy of Sciences, 100080, Beijing, China
wangjianwu@gmail.com,

{jian.yu,paolo.falcarin,maurizio.morisio}@polito.it,
yhan@ict.ac.cn

Abstract. Domain engineering is successful in promoting reuse. An approach to
domain-specific reuse in service-oriented environments is proposed to facilitate
service requesters to reuse Web services. In the approach, we present a conceptual
model of domain-specific services (called domain service). Domain services in a
certain business domain are modeled by semantic and feature modeling tech-
niques, and bound to Web services with diverse capabilities through a variability-
supported matching mechanism. By reusing pre-modeled domain services, service
requesters can describe their requests easily through a service customization
mechanism. Web service selection based on customized results can also be opti-
mized by reusing the pre-matching results between domain services and Web ser-
vices. Feasibility of the whole approach is demonstrated on an example.

Keywords: Domain-Specific Reuse, Domain Service Model, Service Capability
Diversity, Variability-Supported Service Matching, Service Customization.

1 Introduction

Service orientation is becoming a dominant paradigm in distributed computing. There are
a large amount of available Web services on the Internet, and there will be more. In the
bioinformatics domain, for instance, the number of Web services has added up to over
3000 [1]. On the one hand, the abundance of Web services facilitates on-demand applica-
tion construction; on the other hand, since Web services are implemented and maintained
independently, slight differences among them bring difficulties for their (re)use.

We will use a simplified example from the weather service domain throughout the
paper (see Fig. 1). There are over 15 real Web services (including 179 independent
operations)1 providing weather forecast on the Internet. When the number of Web

1 An incomplete list can be found at
 http://wangjianwu.googlepages.com/webservicelistforweatherforecast

222 J. Wang et al.

services with similar functionality is huge, it is very difficult for service requesters to
directly select proper services and reuse them.

We can then split the problem into two parts:

1) Similarity and diversity of service requests2: As shown in Fig.1, Req1 and Req2 are
two similar yet different service requests. For instance, wind speed information is
mandatory in Req1 but not in Req2; the target location areas and the preferred ways
to describe locations are also different. A key problem at the service request level
is how to facilitate service requesters to describe their service requests in a certain
business domain where service requests are similar yet diverse.

2) Similarity and diversity of Web services: Also as shown in Fig.1, WS1 and WS2 are
two similar yet different Web services. For instance, WS1 can only forecast
weather in the U.S., while WS2 can forecast weather worldwide; their input pa-
rameters for location are also different; moreover, WS2 has an additional output:
wind speed. A key problem at the Web service level is how to optimize on demand
selection of executable Web services in a service-oriented environment where Web
services are abundant yet diverse in capability (namely Input, Output and QoS).

Fig. 1. Two levels of service usage in service-oriented environments

To tackle the above problems, we propose an approach to domain-specific reuse in
service-oriented environments based on our previous work [2, 3]. The core of this
approach is a conceptual model of domain-specific services (called domain service),
which acts as a broker between service requesters and Web services. The following
advantages can be obtained:

1) Simplifying service request description by reusing pre-modeled domain services:
Feature modeling techniques [4, 5] are used in domain services to model the com-
monalities and variabilities of similar service capabilities. So instead of describing
service requests from scratch, particular service requests can easily be described by
reusing pre-modeled domain services.

2 Service requests in this paper are restricted to single services. Complex service requests can

be met through service composition, which is beyond the scope of this paper.

 An Approach to Domain-Specific Reuse in Service-Oriented Environments 223

2) Accelerating service request satisfaction by reusing pre-matching results between
domain services and Web services: With pre-modeled domain services, Web ser-
vices can also be matched to proper domain services in advance. Then the match-
ing between particular service requests and Web services can be optimized by reus-
ing the pre-matching results between domain services and Web services.

The rest of this paper is organized as follows. Firstly, we discuss related work in
Section 2. Then an overview of the approach is given in Section 3. Two parts of our ap-
proach, namely domain engineering process and application engineering process, are ex-
plored in detail in the following two sections. Finally, we conclude the paper in Section 6.

2 Related Work

Our approach can be seen as a kind of domain modeling applied to service-oriented
environments in order to facilitate service request description and service matching.

Recently, some traditional approaches in requirement engineering researches have
been applied on service request modeling, such as goal oriented [6] and value based
[7]. Yet they do not tackle how to reuse service requests. There are also some re-
searches addressing the importance of combining top-down requirement refinement
and bottom-up existing service resource reuse [8, 9]. Our work also follows this way,
and our work emphasizes the variability modeling of similar services which is omitted
in the above work.

Feature modeling in domain engineering approaches has been proved to be suc-
cessful in representing reusable and configurable requirements for its good capacity to
express commonalities and variabilities [4, 5]. Recently, some effort has been put into
importing feature modeling to model some aspects of commonalities and variabilities
in service-oriented environments. In [10], each feature represents a service operation,
which can support operation variabilities in similar systems. Feature modeling is also
used to express non-functional properties [11, 12] and implementation techniques [13]
of services. But none of the above proposals deal with service capability variability,
which is a main difficulty for service requesters to directly select Web services.

There has been much research on service matching [14, 15, 16], however they usu-
ally assume that there is a given service request and an available service set, and em-
phasize on matching degree and theory foundation. How to reuse pre-matching results
to facilitate future service matching is still an open challenge.

There are also some works on service virtualization [17, 18], which focus on how
to abstract similar services for better (re)use. However, the abstraction mechanisms
are rather rigid. For example, WS1 and WS2 in Fig. 1 can not be abstracted into one
abstract weather forecast service for the capability differences between them. In a
service-oriented environment where there are abundant Web services with diverse
capabilities, these mechanisms can only bring limited promotion in reuse.

3 Overview of the Approach

Referring to the software development process in traditional domain engineering
approaches [5], our approach also consists of a domain engineering process and an

224 J. Wang et al.

application engineering process (shown in Fig. 2). Activities (rectangles in Fig. 2) and
deliverables (italics in Fig.2) in this approach will be outlined in this section and ex-
plained in detail in the following two sections.

Fig. 2. Overview of the approach to domain-specific reuse in service-oriented environments

Domain Engineering Process: This process is to define domain services and bind
them with Web services for future reuse. Firstly, domain services are modeled by
domain experts through domain service analysis. Secondly, Web services are bound
to proper domain services through service capability matching.

Application Engineering Process: This process is to reuse the deliverables generated
in the domain engineering process in order to improve the satisfaction of particular
service requests. Particular service requests are firstly described by customizing
proper domain services, which can be made easier through reusing pre-modeled do-
main services. Secondly, suitable Web services are bound to customized services by
customized service matching, which can be optimized through reusing pre-matching
results between domain services and Web services. Then each Web service bound to
customized services can be executed to perform the corresponding service requests.

For the applicable domains, our practice shows that the approach is suitable for the
business (sub)domains, such as bioinformatics and travel information domain, which have
the following characteristics: 1) Service requesters want to describe their personal-ized
requests; 2) It is easy to define domain scope, and model domain on-tologies and services;
3) There are a large amount of available Web services provided by different organizations.

4 Domain Engineering Process

To discuss our domain engineering process, this section is divided into two subsections
by its main activities.

 An Approach to Domain-Specific Reuse in Service-Oriented Environments 225

4.1 Domain Service Analysis

Referring to traditional domain analysis activities, the domain service analysis also
involves two main sub activities: domain service identification and domain service
modeling. The first sub activity can refer to existing approaches, such as [8], and is
omitted here. In the second sub activity, capability information of identified domain
services is modeled for the matching with that of Web services. Here, the commonal-
ities and variabilities of domain service capabilities are modeled by features to facili-
tate future service request description, and parameter semantics of domain services
are annotated by domain ontology concepts for automatic and exact service matching.
Besides, since domain ontologies express shared concepts in the domain, it is easy for
service requesters to understand domain services.

To discuss our domain services in more detail, related formal definitions are given be-
low, and the corresponding schemas in XML can easily be obtained from the definitions:

Def. 1 (Feature): feature = < FeatureNode, FeatureEdge >, FeatureNode = {super-
node}∪SubFeatureNode, SubFeatureNode ∈ {subnode1, … , subnoden}, Featu-
reEdge = { <sn, sfn, ft> | sn=supernode, sfn∈SubFeatureNode, ft∈{Man, Opt, XOR,
OR}}. subnodei and the corresponding feature edges start from subnodei also form a
feature (called sub feature). Then a feature with all its descendent features forms a
feature tree.

Def. 2 (Domain Service): domainservice = < inputFeature, outputFeature, qosFea-
ture >. Hereinto, inputFeature, outputFeature and qosFeature are all features. And all
the elements of SubFeatureNode of inputFeature/outputFeature/qosFeature are anno-
tated with proper domain ontology concepts.

Fig. 3. A domain service example with capability variability

For the example of weather forecast, a simplified domain service in weather service
domain, WeatherForecast, is modeled (shown in Fig. 3). For instance, typical location
of WeatherForecast is expressed as ZipCode or LocationName, but not both. They are
thus modeled as two sub features of Location, and the feature type is XOR. The par-
tial formal definition of WeatherForecast is as follows:

226 J. Wang et al.

WeatherForecast = <inputFeatureOfWF, outputFeatureOfWF, qosFeatureOfWF>
inputFeatureOfWF = < { InputOfWF, Date, Location }, { <InputOfWF, Date,

Man>, <InputOfWF, Location, Man > } >
locationFeature = < { Location, ZipCode, LocationName }, { <Location, ZipCode,

XOR>, <Location, LocationName, XOR> } >
...

4.2 Domain Service Matching

Instead of separate domain implementations according to domain models in tradi-
tional domain engineering approaches, we think it is better to keep an eye on available
Web services as well, which is also addressed in [8, 9]. So we employ a service
matching mechanism to carry out domain implementation in service-oriented envi-
ronments, which matches and binds domain services with proper executable Web
services for future reuse. This way also realizes the seamless integration between the
outputs from domain analysis and the inputs needed for domain implementation.

To enable automatic and exact service matching with domain services, techniques
of semantic Web services [14, 19] are used. Parameters of Web services are all anno-
tated with domain ontology concepts. Our definition on semantic Web service is
given below and Fig.4 shows the corresponding semantic Web services of WS1 and
WS2. Note that, to be more precise, it should be semantic Web service operation. We
use semantic Web service just for short.

Def. 3 (Semantic Web Service): sws = <invokeUrl, InputPara, OutputPara, QoSPara>.
Hereinto, invokeUrl is the URL for service invocation; InputPara/OutputPara/QoSPara
is the set of Input/Output/QoS parameters which are all annotated with proper domain
ontology concepts.

Fig. 4. Examples of semantic Web services

To adapt to the capability diversity of similar Web services, we employ a variability-
supported service matching mechanism. Each domain service is shown as a feature
tree. And a feature tree can be seen as a kind of AND/OR tree [20] extended with
optional and XOR nodes. Then the solvability policy of feature trees can be obtained
by extending that of AND/OR trees. Hence the principle of our matching is to firstly
semantically match the parameters of Web services with those of domain services,
and then to estimate the solvability of domain service feature trees. If a domain ser-
vice feature tree is solvable on the condition of a certain Web service’s capability, it
means that the Web service’s capability belongs to the capability variability (namely

 An Approach to Domain-Specific Reuse in Service-Oriented Environments 227

possible capability set) of the domain service, then we say the Web service matches
the domain service.

The following formal definitions will be firstly given for detailed discussion.

Def. 4 (Concept Matching): Suppose concept1 and concept2 are two ontology con-
cepts. If concept1 is equal to or subclass of concept2, then concept1 matches con-
cept2, which is written as cm(concept1, concept2) = TRUE.

Def. 5 (Concept Set Matching): Suppose Concept1 and Concept2 are two ontology
concept sets. If an injective function exists: {<x, y>| x∈Concept1, y∈Concept2,
cm(x, y) = TRUE}, then Concept1 matches Concept2, which is written as
csm(Concept1, Concept2) = TRUE.

Def. 6 (Feature Tree Solvability Policy): If the feature type between one feature fea-
ture and its sub features is mandatory or optional, then feature is solvable if and only if
all its mandatory sub features are solvable; if the feature type is OR, then feature is
solvable if and only if one or more of its sub features are solvable; if the feature type is
XOR, then feature is solvable if and only if one of its sub features is solvable. A feature
tree is solvable if and only if its root feature is solvable.

Def. 7 (Feature Solvability): Suppose feature is a feature and Feature is a feature
set. Given all the elements of Feature are solvable, if feature is solvable according to
Def. 6, then feature is solvable on the condition of Feature, which is written as
fs(Feature, feature) = TRUE.

Def. 8 (Semantic Solvability of Feature): Suppose feature is a feature, Concept is a
concept set. If there exists a feature set Feature (its annotated concept set is written as
FeatureConcept) such that (csm(Concept, FeatureConcept) ∧ fs(Feature, feature)) =
TRUE, then feature is semantically solvable on the condition of Concept, which is
written as ss(Concept, feature) = TRUE.

From the above definitions, we can get the following function to estimate the solv-
ability of a feature y on the condition of a concept set x. It is a recursive function that
the solvability of a feature depends on its semantic matching or the solvability of its
sub features.

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=∧∉∨∨∨∨
=∧∉∧∧¬∧¬∨

∨¬∧∧∧¬∨
¬∧∧¬∧∨

=−∧
=∧∉∧∧∧∨

∈

=

)))(,(())(,(...))(,())(,(),(

)))(,(()))(,(...))(,())(,((...

)))(,(...))(,())(,((

)))(,(...))(,())(,((),(

)))()(,((

)))(,(()))(,(...))(,())(,((),(

),(

),(

21

21

21

21

1

111211

ORySubyftLFyysubxssysubxssysubxssyxm

XORySubyftLFyysubxssysubxssysubxss

ysubxssysubxssysubxss

ysubxssysubxssysubxssyxm

OptySubySubyft

ManySubyftLFyysubxssysubxssysubxssyxm

LFyyxm

yxss

n

n

n

n

n

Hereinto, LF is the leaf feature set whose elements do not have sub features; Sub(y) is
the sub feature set of y whose elements are sub1, …, subn; Sub1(y) is a sub set of
Sub(y) whose elements are sub11, …, sub1n; ft(y, Sub(y)) is the feature type between
feature y and its sub features.

Def. 9 (Service Matching): Suppose sws is a semantic Web service, and ds is a domain
service. The annotated concept set of sws’s Input/Output/QoS parameters is written as

228 J. Wang et al.

sws.InputConcept/OutputConcept/QoSConcept. If (ss(sws.InputConcept, ds.inputFeature)
∧ ss(sws.OutputConcept, ds.outputFeature) ∧ ss(sws.QoSConcept, ds.qosFeature)) =
TRUE, then sws matches ds, which is written as sm(sws, ds) = TRUE.

The concrete service matching algorithm can easily be obtained from the above defi-
nitions and is then omitted for the space limitation.

Besides semantic and variability-supported, another property of the matching
mechanism can also be obtained from the definitions, called Additional Parameter
Allowed. Based on the above definitions, if csm(Concept1, Concept2) = TRUE, and
Concept1 ⊆ Concept1’, then csm(Concept1’, Concept2) = TRUE. So domain services
can match Web services with additional parameters. This property fits the
characteristic that independent Web services may have additional parameters com-
pared to pre-modeled domain services.

For the above weather forecast example, both SWS1 and SWS2 matches domain service
WeatherForecast. Let’s take the input matching between WeatherForecast and SWS1 for
instance (Fig. 5), the annotated concept set of input parameters of SWS1 matches feature
set:{#Date, #USZipCode} (based on Def. 4), and the input feature of WeatherForecast is
semantically solvable on the condition of {#Date, #USZipCode} according to Def. 8. So
ss(SWS1.InputConcept, WeatherForecast.inputFeatureOfWF) = TRUE.

Fig. 5. Example of service matching between domain services and semantic Web services

5 Application Engineering Process

To reuse the deliverables generated in the above domain engineering process to
facilitate the satisfaction of particular service requests, a corresponding application
engineering process is discussed in this section. We will discuss it through two
subsections according to its main activities.

5.1 Domain Service Customization

With reusable domain services, service requesters need not describe their requests from
scratch. Yet there still may be a few differences between particular service requests and
domain services. So we employ a domain service customization mechanism to enable
service requesters to describe their requests by reusing domain services.

 An Approach to Domain-Specific Reuse in Service-Oriented Environments 229

Based on existing works on feature configuration [21], service customization op-
erations are defined, which can be classified into three categories: Add (e.g. add one
mandatory sub feature), Delete (e.g. delete one optional sub feature) and Configure
(e.g. select one sub feature from a XOR feature). All operations can be listed and
formally defined following the way of the example below.

FeatureNodeSubFeatureFeature eatureselectXORF ⎯⎯⎯⎯⎯ →⎯× : { <x, y, z> |
x∈Feature, y∈x.SubFeatureNode, z∈Feature, z.FeatureNode = { y }∪{
x.supernode }, z.FeatureEdge = { <x.supernode, y, Man> } }

For Req1 in the example of weather forecast, the service requester can customize
WeatherForecast by adding wind speed as a sub feature of its output and selecting the
sub feature LocationName of the Location feature. The customized result is shown in
Fig.6. For the features she does not customize (such as Centigrade or Fahrenheit), it
means they do not concern her, so each possibility of their variabilities is suitable to her.

Fig. 6. An example of customized WeatherForecast domain service

5.2 Customized Service Matching

To perform particular service requests, not like product configuration on a separately
implemented software in traditional domain engineering approaches, a mechanism to
match and select Web services according to the customized service is employed,
which can reuse the available Web services.

The service matching algorithm in Section 4 can also be applied in the customized
service matching, and we find that pre-matching results of domain services is reusable
for some customization operations which can then optimize the service selection.

Theorem 1: Suppose ds is a domain service, op is a customization operation on ds,
and SWS is a semantic Web service set. The customization result of ds by op is writ-
ten as op(ds). For ,|{1 SWSxxSWS ∈= }),(TRUEdsxsm = and ,|{2 SWSxxSWS ∈=

}))(,(TRUEdsopxsm = , if the following proposition is true, then SWS2 ⊆ SWS1:

230 J. Wang et al.

)).,(())).(,()((

)).,(())).(,()((

)).,(())).(,()((

qosFeaturedsxfsqosFeaturedsopxfsx

ureoutputFeatdsxfsureoutputFeatdsopxfsx

reinputFeatudsxfsreinputFeatudsopxfsx

⇒∀∧
⇒∀∧

⇒∀

Proof: For each element of SWS2: sws, ss(sws.InputConcept, op(ds).inputFeature)=
TRUE, which is based on Def. 9. Then, there exists a feature set (written as Feature)
and a corresponding annotated concept set (written as FeatureConcept), such that
(csm(sws.InputConcept, FeatureConcept) ∧ fs(Feature, op(ds).inputFeature)) = TRUE.
If the above proposition is true, then the following proposition is also true: ,((Featurefs

)).,(())).(reinputFeatudsFeaturefsreinputFeatudsop ⇒ . So (csm(sws.InputConcept, Fea-

tureConcept) ∧ fs(Feature, ds.inputFeature)) = TRUE. Then ss(sws.InputConcept,
ds.inputFeature) = TRUE, which is according to Def. 8. In similar ways, we can
know that ss(sws.OutputConcept, ds.outputFeature) = TRUE and ss(sws.QoSConcept,
ds.qosFeature) = TRUE. So sm(sws, ds) = TRUE, namely sws∈SWS1.

For each customization operation, we can formally know whether it makes the propo-
sition of Theorem 1 true. So, if a domain service is customized by the operations
making the proposition true, the service selection for the customized service can be
optimized. Not all the available Web services, but only Web services bound to the
corresponding domain service need to be tested whether they match the customized
service. Moreover, Web services can be matched automatically and executed in-
stantly, then particular service requests can be performed on-the-fly.

For Req1 in the example of weather forecast, both of the needed customization op-
erations (namely addNewFeature and selectXORFeature) meet the proposition of
Theorem 1, so only the Web services bound to WeatherForecast need to be tested
again using the matching algorithm in sub section 4.2. Of SWS1 and SWS2, only
SWS2 matches the customization result. So it can be executed to perform Req1.

6 Conclusions

To promote service reuse from a domain oriented perspective, an approach to domain-
specific reuse in service-oriented environments is proposed. Hereinto, domain ser-
vices in a certain business domain are modeled and matched to proper Web services
for reuse in the domain engineering process. Then, new service requests in the same
domain can be easily satisfied by reusing pre-modeled domain services and pre-
matching results in the application engineering process. Feasibility of the whole
approach has been primarily validated through running some sample services in a
browser/server architecture-based prototype.

For future work, since the diversity of real service requests and Web services is
very complicated, our approach needs to be extended to have more expressive power.
We are supporting more complex feature models, such as feature constraints, and
more complex service capability description, such as service precondition and effect.
Moreover, a more robust and friendly tool, and more and in-depth empirical experi-
ments will be implemented to obtain evidence, which can testify the advantages of
our approach.

 An Approach to Domain-Specific Reuse in Service-Oriented Environments 231

Acknowledgement

This research is partially funded by the National Natural Science Foundation of China
(NSFC) under grand No. 60573117.

References

1. Hull, D., Zolin, E., et al.: Deciding Semantic Matching of Stateless Services. In: 21st Na-
tional Conference on Artificial Intelligence and 18th Innovative Applications of Artificial
Intelligence Conference (AAAI 2006), pp. 1319–1324 (2006)

2. Han, Y., Geng, H., et al.: VINCA - A Visual and Personalized Business-level Composition
Language for Chaining Web-based Services. In: Orlowska, M.E., Weerawarana, S.,
Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 165–177. Springer,
Heidelberg (2003)

3. Wang, J., Yu, J., et al.: A Service Modeling Approach with Business-Level Reusability
and Extensibility. In: 1st IEEE Int. Workshop on Service-Oriented System Engineering,
pp. 23–28 (2005)

4. Kang, K.C., Cohen, S.G., et al.: Feature-Oriented Domain Analysis Feasibility Study.
Technical Report: SEI-90-TR-21. Pittsburgh, Software Engineering Institute, Carnegie
Mellon University (1990)

5. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and Applica-
tions. Addison-Wesley, New York (2000)

6. Lo, A., Yu, E.: From Business Models to Service-Oriented Design: A Reference Catalog
Approach. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007.
LNCS, vol. 4801, pp. 87–101. Springer, Heidelberg (2007)

7. Gordijn, J., Yu, E., et al.: E-service design using i* and e3 value modeling. IEEE Soft-
ware 23(3), 26–33 (2006)

8. Arsanjani, A.: Service-Oriented Modeling and Architecture (2004), http://www.ibm.
com/developerworks/library/ws-soa-design1/

9. Maiden, N.: Servicing Your Requirements. IEEE Software 23(5), 14–16 (2006)
10. Chen, F., Li, S., et al.: Feature Analysis for Service-Oriented Reengineering. In: 12th Asia-

Pacific Software Engineering Conference (APSEC 2005), pp. 201–208 (2005)
11. Wada, H., Suzuki, J., et al.: A Feature Modeling Support for Non-Functional Constraints

in Service Oriented Architecture. In: 2007 IEEE Int. Conf. on Services Computing (SCC
2007), pp. 187–195 (2007)

12. Fantinato, M., Gimenes, I., et al.: Supporting QoS Negotiation with Feature Modeling.
In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp.
429–434. Springer, Heidelberg (2007)

13. Robak, S., Franczyk, B.: Modeling Web Services Variability with Feature Diagrams. In:
Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS, vol. 2593,
pp. 120–128. Springer, Heidelberg (2003)

14. Martin, D., Paolucci, M., et al.: Bringing Semantics to Web Services: The OWL-S Ap-
proach. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42.
Springer, Heidelberg (2005)

15. Li., L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic Web
Technology. In: 12th Int. World Wide Web Conference (WWW 2003), pp. 331–339
(2003)

232 J. Wang et al.

16. Paolucci, M., Kawamura, T., et al.: Semantic Matching of Web Services Capabilities. In:
Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Hei-
delberg (2002)

17. Tan, Y., Vellanki, V., et al.: Service Domains. IBM Systems Journal 43(4), 734–755
(2004)

18. Benatallah, B., Sheng, Q., et al.: The Self-Serv Environment for Web Services Composi-
tion. IEEE Internet Computing 7(1), 40–48 (2003)

19. McIlraith, S., Son, T., et al.: Semantic Web Services. IEEE Intelligent Systems 16(2), 46–53
(2001)

20. Luger, G.: Artificial Intelligence: Structures and Strategies for Complex Problem Solving,
5th edn. Pearson Addison Wesley, London (2004)

21. Czarnecki, K., Helsen, S., et al.: Staged Configuration through Specialization and Multi-
Level Configuration of Feature Models. Software Process: Improvement and Practice 10(2),
143–169 (2005)

	An Approach to Domain-Specific Reuse in Service-Oriented Environments
	Introduction
	Related Work
	Overview of the Approach
	Domain Engineering Process
	Domain Service Analysis
	Domain Service Matching

	Application Engineering Process
	Domain Service Customization
	Customized Service Matching

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

